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A Statistical Study on Parameter Selection of
Operators in Continuous State Transition Algorithm
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Abstract—State transition algorithm (STA) has been emerging
as a novel metaheuristic method for global optimization in recent
few years. In our previous study, the parameter of transformation
operator in continuous STA is kept constant or decreasing itself
in a periodical way. In this paper, the optimal parameter selection
of the STA is taken in consideration. Firstly, a statistical study
with four benchmark two-dimensional functions is conducted
to show how these parameters affect the search ability of the
STA. Based on the experience gained from the statistical study,
then, a new continuous STA with optimal parameters strategy
is proposed to accelerate its search process. The proposed STA
is successfully applied to twelve benchmarks with 20, 30 and
50 dimensional space. Comparison with other metaheuristics has
also demonstrated the effectiveness of the proposed method.

Index Terms—State transition algorithm, statistical study,
metaheuristic, global optimization.

I. INTRODUCTION

STATE-TRANSITION-ALGORITHM (STA) [1], [2] is a
recently emerging metaheuristic method for global op-

timization and has found applications in nonlinear system
identification and control [3], water distribution networks
configuration [4], sensor network localization [5], PID con-
troller design [6], [7], overlapping peaks resolution [8], im-
age segmentation [9], wind power prediction [10], dynamic
optimization [11], [12], bi-level optimization [13], modeling
and control of complex industrial processes [14]–[19], etc.
In STA, a solution to an optimization problem is considered
as a state, and an update of a solution can be regarded as
a state transition. Unlike the population-based evolutionary
algorithms [20]–[22], the standard STA is an individual-based
optimization method. Based on an incumbent best solution,
a neighborhood with special characteristics will be formed
automatically when using certain state transformation operator.
A variety of state transformation operators, for example,
rotation, translation, expansion, and axesion in continuous
STA, or swap, shift, symmetry and substitute in discrete STA,
are designed purposely for both global and local search. On
the basis of the neighborhood, then, a sampling technique is
used to generate a candidate set, and the next best solution
is updated by using a selection technique based on previous
best solution and the candidate set. This process is repeated
using state transformation operators alternatively until some
terminal conditions are satisfied.

In this paper, the continuous state transition algorithm is
studied. As aforementioned, in continuous STA, there are four
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state transformation operators, and each transformation oper-
ator has certain geometric significance, i.e., the neighborhood
formed by each transformation operator has certain geometric
characteristic. To be more specific, the rotation transforma-
tion has the functionality to search in a hypersphere with
the maximal radius α, called rotation factor; the translation
transformation has the functionality to search along a line with
the maximal length β, called translation factor; the expansion
transformation has the functionality to search in a broader
space controlled by the expansion factor γ; and the axesion
transformation is designed to strengthen single-dimensional
search regulated by the axesion factor δ. In our previous
studies, the rotation factor is exponentially decreasing from
a maximum value to a minimum value in a periodic way,
and other transformation factors are kept constant at one [1].
To gain a better exploitation ability, all state transformation
factors are exponentially decreasing from a maximum value
to a minimum value in a periodic way in [5].

As is known to us, there exist several parameters in meta-
heuristic methods and parameter selection plays a significant
role in their performance. For instance, crossover and mutation
probability in genetic algorithms (GAs) [23], inertia weight
and acceleration factors in particle swarm optimization (PSO)
[24], [25], amplification factor and crossover rate in differ-
ential evolution (DE) [26]–[28], and neighborhood radius in
artificial bee colony (ABC) [29]. In general, the parameter
setting can be summarized to two types: parameter tuning
and parameter control. The former is to find good parameter
values before running these algorithms, and they remain fixed
during the run. On the contrary, the later is to update parameter
values in the process, and the types of update mechanisms can
be deterministic, adaptive, or self-adaptive (for details, please
refer to [30]–[32]).

To gain a better understanding of the parameters of transfor-
mation operators in continuous STA affecting its performance,
the parameter selection in continuous STA is focused in
this study. With four commonly used benchmark functions
as cases, several properties of the operator parameters are
observed from a statistical study. With the gained experience
from the statistical results, a new continuous STA with optimal
operator parameter selection strategy is proposed, and the
proposed STA is successfully applied to other benchmarks
with higher dimensions.

The remainder of this paper is organized as follows. In Sec-
tion II, the standard continuous STA are described. Section III
gives a statistical study to show how the operator parameters
in continuous STA affecting its performance . The proposed
STA with optimal operator parameter selection strategy is
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given in Section IV. In Section V, experimental results are
given to testify the effectiveness of the proposed STA. Finally,
conclusion is drawn in Section VI.

II. STANDARD CONTINUOUS STATE TRANSITION
ALGORITHM

Consider the following continuous optimization problem
with simple constraints:

min
x∈Ω

f(x) (1)

where Ω ⊆ Rn is a closed and compact set, which is usually
composed of lower and upper bounds of x, i.e., Ω = {x ∈
Rn|xi ≤ xi ≤ xi, i = 1, · · · , n}.

In classical iterative methods for numerical optimization,
a new candidate is generated based on a previous solution
by using different optimization operators. In a state transition
way, a solution can be regarded as a state, and an update of a
solution can be considered as a state transition. On the basis
of state space representation, the unified form of generation
of solution in state transition algorithm can be described as
follows: {

sk+1 = Aksk +Bkuk

yk+1 = f(sk+1)
, (2)

where sk and sk+1 stand for a current state and the next state
respectively, corresponding to solutions of the optimization
problem; uk is a function of sk and historical states; yk is the
fitness value at sk; Ak and Bk are state transition matrices,
which can be considered as transformation operators; f is the
objective function or fitness function.

A. State transition operators

Using state space representation and state transformation
for reference, four special state transformation operators are
designed to generate candidate solutions for an optimization
problem [1], [33].
(1) Rotation transformation

sk+1 = sk + α
1

n∥sk∥2
Rrsk, (3)

where α is a positive constant, called the rotation factor; Rr

∈ Rn×n, is a random matrix with its entries being uniformly
distributed random variables defined on the interval [-1, 1],
and ∥ · ∥2 is the L2-norm (or Euclidean norm) of a vector.
This rotation transformation has the functionality to search
in a hypersphere with the maximal radius α, which has been
testified. The rotation transformation is designed for local
search and can be used to guarantee local optimality and
manipulate solution accuracy.
(2) Translation transformation

sk+1 = sk + βRt
sk − sk−1

∥sk − sk−1∥2
, (4)

where β is a positive constant, called the translation factor;
Rt ∈ R is a uniformly distributed random variable defined
on the interval [0,1]. It is not difficult to understand that
the translation transformation has the functionality to search
along a line from sk−1 to sk at the starting point sk with

maximum length β. The translation operator is actually a line
search, and it can be considered as a heuristic operator since
there exists a possible better solution along the line if sk is
better than sk−1.
(3) Expansion transformation

sk+1 = sk + γResk, (5)

where γ is a positive constant, called the expansion factor;
Re ∈ Rn×n is a random diagonal matrix with its entries
obeying the Gaussian distribution (or normal distribution).
In the standard STA, the mean equals zero and standard
deviation equals one, i.e., the standard normal distribution is
used. The expansion transformation has the functionality to
search in the whole space in probability, and it is designed
for global search.
(4) Axesion transformation

sk+1 = sk + δRask (6)

where δ is a positive constant, called the axesion factor; Ra

∈ Rn×n is a random diagonal matrix with its entries obeying
the Gaussian distribution and only one random position having
nonzero value. The axesion transformation is designed to
search along the axes, aiming to strengthen single-dimensional
search [34].

B. A sampling technique

The idea of sampling incorporated in continuous STA was
firstly illustrated in [35]. It is found that for a given solution, a
neighborhood will be automatically formed. To avoid enumer-
ating all possible candidate solutions, representative samples
can be used to reflect the characteristics of the neighborhood.
Taking the rotation transformation for example, when inde-
pendently executing the rotation operator for SE times, a total
number of SE samples are generated in pseudocode as follows

1: for i← 1, SE do
2: State(:, i)← Best + α 1

n∥Best∥2
RrBest

3: end for
where Best is the incumbent best solution, and SE samples
are stored in the matrix State.

C. An update strategy

As mentioned above, based on the incumbent best solution,
a total number of SE candidate solutions are generated, but it
should be noted that these candidate solutions do not always
belong to the domain Ω. To address this issue, these samples
are projected into Ω through

xi =


xi, if xi > xi

xi, if xi < xi

xi, otherwise

(7)

As a result, the candidate solutions can be guaranteed to
be always feasible. Next, a new best solution is selected from
the candidate set by virtue of the fitness function, denoted as
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newBest. Finally, an update strategy based on greedy criterion
is used to update the incumbent best as shown below

Best =

{
newBest, if f(newBest) < f(Best)

Best, otherwise
(8)

D. Algorithm procedure of the standard continuous STA
With the state transformation operators for both local and

global search, sampling technique for time-saving and update
strategy for convergence, the standard continuous STA can be
described by the following pseudocodes

1: State ← initialization(SE,Ω)
2: Best ← fitness(funfcn,State)
3: repeat
4: if α < αmin then
5: α← αmax

6: end if
7: Best ← expansion(funfcn,Best,SE,β,γ)
8: Best ← rotation(funfcn,Best,SE,β,α)
9: Best ← axesion(funfcn,Best,SE,β,δ)

10: α← α
fc

11: until the specified termination criterion is met
As for detailed explanations, rotation(·) in above pseu-

docode is given for illustration purposes as follows
1: oldBest ← Best
2: fBest ← feval(funfcn,oldBest)
3: State ← op rotate(Best,SE,α)
4: [newBest,fnewBest] ← fitness(funfcn,State)
5: if fnewBest < fBest then
6: fBest ← fnewBest
7: Best ← newBest
8: State ← op translate(oldBest,newBest,SE,β)
9: [newBest,fnewBest] ← fitness(funfcn,State)

10: if fnewBest < fBest then
11: fBest ← fnewBest
12: Best ← newBest
13: end if
14: end if

As shown in the above pseudocodes, initialization (·) is
used to make sure the initial solution is in the range Ω. The
rotation factor α is decreasing periodically from a maximum
value αmax to a minimum value αmin in an exponential way
with base fc, which is called lessening coefficient. op rotate(·)
and op translate(·) represent the implementations of proposed
sampling technique for rotation and translation operators,
respectively, and fitness(·) represents the implementation of
selecting the new best solution from SE samples. It should
be emphasized that the translation operator is only executed
when a solution better than the incumbent best solution can be
found in the SE samples from rotation, expansion or axesion
transformation. In the standard continuous STA, the parameter
settings are given as follows: αmax = 1, αmin = 1e-4,
β = 1, γ = 1, δ = 1, SE = 30, fc = 2.

III. STATISTICAL STUDY OF THE STATE TRANSFORMATION
FACTORS

As described in Section II, in the standard continuous
STA, the state transformation factors like expansion factor

γ, axesion factor δ are kept constant, and rotation factor α
is decreasing periodically from a maximum value αmax to a
minimum value αmin in an exponential way. In order to select
the values of these parameters in a more effective manner, a
statistical study of the state transformation factors is carried
out to investigate the effect of parameter selection on the
performance of state transition operators.

Four well-known benchmark functions are listed below:
(1) Spherical function

f1(x) =
n∑

i=1

x2
i ,

where the global optimum x∗ = (0, · · · , 0) and f(x∗) = 0,
−100 ≤ xi ≤ 100, i = 1, · · · , n.

(2) Rosenbrock function

f2(x) =
n∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2),

where the global optimum x∗ = (1, · · · , 1) and f(x∗) = 0,
−30 ≤ xi ≤ 30, i = 1, · · · , n.

(3) Rastrigin function

f3(x) =

n∑
i=1

(x2
i − 10 cos(2πxi) + 10),

where the global optimum x∗ = (0, · · · , 0) and f(x∗) = 0,
−5.12 ≤ xi ≤ 5.12, i = 1, · · · , n.

(4) Griewank function

f4(x) =
1

4000

n∑
i=1

x2
i −

n∏
i

cos | xi√
i
|+ 1,

where the global optimum x∗ = (0, · · · , 0) and f(x∗) = 0,
−600 ≤ xi ≤ 600, i = 1, · · · , n.

For a given solution Best0, three state transition oper-
ators (rotation, expansion and axesion) are performed re-
spectively for SE times (yielding SE samples) indepen-
dently on each benchmark function using different val-
ues of state transformation factors. To be more specific,
there are five groups of given solutions, i.e., Best0 =
(0.01, 0.01), (0.1, 0.1), (0.5, 0.5), (0.9, 0.9), (0.99, 0.99); the
total number of samples is set at SE = 1e6; and the value of
state transformation operators is chosen from the set Ω = {1,
1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8}.

To evaluate the influence of the parameter selection on the
performance of state transition operators, the following two
indexes are introduced:

ρs =
Ns

SE
(9)

ρd =
|ave− fBest0|
|fBest0|

(10)

where ρs and ρd are called success rate and descent rate,
respectively. Ns is the number of samples whose objective
function values are smaller than that of the Best0. ave is
the average function value of the Ns samples, and fBest0
represents the function value for Best0,

The statistical results for different values of state transfor-
mation factors can be found from Table I to Table IV.
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TABLE I
STATISTICAL RESULTS OF SUCCESS RATE AND DESCENT RATE FOR THE ROTATION TRANSFORMATION (SPHERICAL PROBLEM)

Best0 Index α = 1 α = 0.1 α = 0.01 α = 1e-3 α = 1e-4 α = 1e-5 α = 1e-6 α = 1e-7 α = 1e-8

(0.01, 0.01) ρs 0.0012 0.0919 0.4550 0.4953 0.5002 0.5000 0.4991 0.5001 0.4999
ρd 5.0448e-1 5.0347e-1 2.7785e-1 3.2465e-2 3.2970e-3 3.2960e-4 3.2990e-5 3.2923e-6 3.3056e-7

(0.1, 0.1) ρs 0.0921 0.4555 0.4956 0.4990 0.4996 0.4993 0.4996 0.5001 0.5012
ρd 5.0313e-1 2.7801e-1 3.2470e-2 3.2949e-3 3.3048e-4 3.3026e-5 3.2996e-6 3.2944e-7 3.2962e-8

(0.5, 0.5) ρs 0.4144 0.4899 0.4992 0.5000 0.4999 0.5006 0.4989 0.5008 0.5003
ρd 4.4908e-1 6.3938e-2 6.5821e-3 6.5914e-4 6.5918e-5 6.6006e-6 6.5986e-7 6.5950e-8 6.6128e-9

(0.9, 0.9) ρs 0.4498 0.4947 0.4994 0.5002 0.5000 0.4994 0.4995 0.4996 0.4989
ρd 3.0238e-1 3.6061e-2 3.6623e-3 3.6555e-4 3.6682e-5 3.6639e-6 3.6656e-7 3.6734e-8 3.6637e-9

(0.99, 0.99) ρs 0.4543 0.4955 0.4986 0.5000 0.4995 0.4999 0.5001 0.5008 0.4999
ρd 2.7968e-1 3.2731e-2 3.3249e-3 3.3378e-4 3.3307e-5 3.3289e-6 3.3337e-7 3.3349e-8 3.3323e-9

TABLE II
STATISTICAL RESULTS OF SUCCESS RATE AND DESCENT RATE FOR THE ROTATION TRANSFORMATION (ROSENBROCK PROBLEM)

Best0 Index α = 1 α = 0.1 α = 0.01 α = 1e-3 α = 1e-4 α = 1e-5 α = 1e-6 α = 1e-7 α = 1e-8

(0.01, 0.01) ρs 0.0700 0.2665 0.4766 0.4985 0.5001 0.4997 0.5005 0.4991 0.4999
ρd 2.9603e-1 4.3729e-2 6.1371e-3 6.6152e-4 6.6718e-5 6.6619e-6 6.6708e-7 6.6658e-8 6.6683e-9

(0.1, 0.1) ρs 0.1891 0.5082 0.5019 0.4996 0.5003 0.5000 0.5005 0.4993 0.4999
ρd 3.9041e-1 2.2187e-1 2.6801e-2 2.7281e-3 2.7272e-4 2.7264e-5 2.7332e-6 2.7328e-7 2.7319e-8

(0.5, 0.5) ρs 0.3884 0.5049 0.5005 0.5003 0.5003 0.5004 0.4996 0.5010 0.4997
ρd 6.4979e-1 2.3369e-1 2.5464e-2 2.5633e-3 2.5620e-4 2.5615e-5 2.5619e-6 2.5595e-7 2.5623e-8

(0.9, 0.9) ρs 0.1121 0.5006 0.4999 0.5004 0.5001 0.4999 0.5005 0.4994 0.4996
ρd 6.4261e-1 6.3423e-1 1.0225e-1 1.0622e-2 1.0642e-3 1.0650e-4 1.0645e-5 1.0649e-6 1.0633e-7

(0.99, 0.99) ρs 0.0052 0.1146 0.5004 0.5003 0.4996 0.4992 0.5003 0.4994 0.5003
ρd 5.1273e-1 6.5350e-1 6.2945e-1 1.0034e-1 1.0419e-2 1.0446e-3 1.0448e-4 1.0457e-5 1.0441e-6

TABLE III
STATISTICAL RESULTS OF SUCCESS RATE AND DESCENT RATE FOR THE ROTATION TRANSFORMATION (RASTRIGIN PROBLEM)

Best0 Index α = 1 α = 0.1 α = 0.01 α = 1e-3 α = 1e-4 α = 1e-5 α = 1e-6 α = 1e-7 α = 1e-8

(0.01, 0.01) ρs 0.0012 0.0918 0.4552 0.4948 0.4993 0.5000 0.5003 0.5000 0.4995
ρd 5.0017e-1 5.0278e-1 2.7796e-1 3.2470e-2 3.2959e-3 3.3012e-4 3.2908e-5 3.3004e-6 3.3061e-7

(0.1, 0.1) ρs 0.0932 0.4606 0.4960 0.4992 0.5000 0.4995 0.4997 0.4996 0.4998
ρd 4.9612e-1 2.7255e-1 3.1446e-2 3.1888e-3 3.1848e-4 3.1876e-5 3.1924e-6 3.1915e-7 3.1902e-8

(0.5, 0.5) ρs 0.9999 0.9926 0.6778 0.5173 0.5014 0.5004 0.4994 0.5000 0.5008
ρd 4.2649e-1 8.0885e-3 1.3463e-4 8.6621e-6 8.1893e-7 8.1569e-8 8.1507e-9 8.1457e-10 8.1412e-11

(0.9, 0.9) ρs 0.0849 0.4581 0.4950 0.5002 0.5003 0.5004 0.5005 0.5001 0.4998
ρd 3.1378e-1 1.8020e-1 2.1018e-2 2.1261e-3 2.1318e-4 2.1297e-5 2.1310e-6 2.1274e-7 2.1323e-8

(0.99, 0.99) ρs 0.0003 0.0266 0.4140 0.4903 0.4986 0.4995 0.5005 0.4998 0.4999
ρd 2.5399e-3 2.4397e-3 2.1969e-3 3.1457e-4 3.2336e-5 3.2384e-6 3.2463e-7 3.2484e-8 3.2424e-9

TABLE IV
STATISTICAL RESULTS OF SUCCESS RATE AND DESCENT RATE FOR THE ROTATION TRANSFORMATION (GRIEWANK PROBLEM)

Best0 Index α = 1 α = 0.1 α = 0.01 α = 1e-3 α = 1e-4 α = 1e-5 α = 1e-6 α = 1e-7 α = 1e-8

(0.01, 0.01) ρs 0.0014 0.0967 0.4677 0.4966 0.4993 0.4996 0.5000 0.5007 0.5003
ρd 5.0031e-1 5.0462e-1 2.8800e-1 3.4337e-2 3.4921e-3 3.4973e-4 3.4962e-5 3.4957e-6 3.5030e-7

(0.1, 0.1) ρs 0.0962 0.4676 0.4975 0.4997 0.5001 0.4992 0.5003 0.4995 0.4999
ρd 5.0587e-1 2.8807e-1 3.4234e-2 3.4888e-3 3.4825e-4 3.4831e-5 3.4904e-6 3.4869e-7 3.4899e-8

(0.5, 0.5) ρs 0.4250 0.4937 0.4993 0.4998 0.4996 0.5003 0.5000 0.5007 0.5006
ρd 4.4869e-1 6.4092e-2 6.5932e-3 6.6154e-4 6.6073e-5 6.6104e-6 6.6212e-7 6.6257e-8 6.6127e-9

(0.9, 0.9) ρs 0.4532 0.4958 0.4994 0.5005 0.4998 0.4995 0.4996 0.5002 0.4994
ρd 2.7822e-1 3.1695e-2 3.2066e-3 3.2065e-4 3.2064e-5 3.2016e-6 3.2054e-7 3.2012e-8 3.2048e-9

(0.99, 0.99) ρs 0.4550 0.4958 0.4999 0.5003 0.5002 0.4996 0.4999 0.5003 0.5002
ρd 2.4931e-1 2.7546e-2 2.7818e-3 2.7817e-4 2.7754e-5 2.7808e-6 2.7839e-7 2.7824e-8 2.7801e-9
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Fig. 1. The changes of success rate ρs and descent rate ρd with α, γ and δ respectively when approaching the global minima

As indicated in these tables, the following properties can be
observed:

1) as the decrease of a state transformation factor below
a certain threshold, the descent rate ρd is showing a
declining trend.

2) the success rate remains almost steadily high if a state
transformation factor is below a certain threshold.

3) the success rate of the rotation transformation is not
high until the rotation factor is below a threshold when
current solution Best0 is approaching the global optimal
solution.

To be more specific, let’s take the rotation transformation
for example, the changes of success rate ρs and descent rate
ρd with the rotation factor α are illustrated in Fig. 1 when
current solution Best0 is approaching the global optimum.
Here, Best0 equals to (0.01, 0.01), (0.99, 0.99), (0.01, 0.01)
and (0.01, 0.01) for f1, f2, f3 and f4 respectively. By taking
a closer look at these two figures, it is not difficult to find
that there exists a trade-off between the success rate and the
descent rate. For instance, when α = 1, the success rate ρs
is quite low, while the descent rate ρd is quite high. On the
contrary, when α ∈ {1e-5, 1e-6, 1e-7, 1e-8}, the success rate
ρs is quite high, while the descent rate ρd is quite low.

Remark 1: The property 3) can provide additional support
to the way in changing the rotation factor in the standard
continuous STA, i.e., α is not kept constant but decreasing
periodically from a maximum value αmax to a minimum value
αmin. Anyway, it is obvious that the way in changing the state
transition factors is not in an optimal manner.

IV. STATE TRANSITION ALGORITHM WITH OPTIMAL
PARAMETER SELECTION

As inspired by the statistical study of the state transforma-
tion factors, in this section, an optimal parameter selection
strategy is proposed to accelerate the search of the standard
continuous state transition algorithm.

A. Optimal parameter selection for the state transformation
factors

In classical iterative methods for numerical optimization,
the following iterative formula is usually adopted

xk+1 = xk + akdk (11)

where dk is the search direction, and ak is the step size. For
gradient-based algorithms, the search direction is relevant to
the gradient of current iterative point, for instance, the steepest
descent method, dk = −∇f(xk), and the step size ak is often
restricted to the range [0,1]. It can be found that the pattern of
iterative formula in continuous STA is similar to that of Eq.
(11), as shown below

1
n∥sk∥2

Rrsk

Rt
sk−sk−1

∥sk−sk−1∥2

Resk
Rask

⇒ d̃k,

α
β
γ
δ

⇒ ãk,

and a big difference is that the search direction is not de-
termined. Compared with gradient-based algorithms, the STA
can be used for global optimization lies in at least two aspects:
1) the search is in all directions; 2) the search can go to
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any length. While compared with the traditional trust region
method, the similarity is that some parts of the STA (except
the translation transformation) can be considered as a special
kind of trust region method, but the differences are: i) the STA
utilizes the original function not its quadratic approximation;
ii) the search direction in STA is stochastic.

For rotation and translation transformation, the search zone
is restricted in a hypersphere or along a line, which are
controlled by the corresponding transformation factors. For
expansion and axesion transformation, although the search
zone can be expanded to the whole space in probability due
to the Gaussian distribution, the search zone is restricted and
manipulated by the expansion and axesion factors as well. That
is to say, in practical numerical computation, the neighborhood
formed by the state transformation operators is controlled by
the transformation factors to a large extent, which are also
testified by the statistical study. To simplify the parameter
selection and accelerate the search process, the values of these
parameters are all taken from the set Ω = {1, 1e-1, 1e-2, 1e-3,
1e-4, 1e-5, 1e-6, 1e-7, 1e-8}, and the parameter value with the
corresponding smallest objective function value is chosen.

B. The proposed STA

Let’s denote the optimal parameter as ã∗, and then we have

ã∗ = argmin
ãk∈Ω

f(xk + ãkd̃k) (12)

In theory, the neighborhood formed by the state transforma-
tion operators has infinite candidate solutions; however, only
SE samples are used for evaluation in practice. That is to say,
for a given parameter value, only SE samples are taken into
consideration. In order to further utilize the parameter more
completely, the selected parameter value is kept for a period
of time, denoted as Tp. To be more specific, the detailed of
the proposed STA can be outlined as follows

1: repeat
2: Best ← expansion w(funfcn,Best,SE,Ω)
3: Best ← rotation w(funfcn,Best,SE,Ω)
4: Best ← axesion w(funfcn,Best,SE,Ω)
5: until the specified termination criterion is met
In the meanwhile, rotation w(·) in above pseudocode is

given for further explanations
1: [Best,α] ← update alpha(funfcn,Best,SE,Ω)
2: for i← 1, Tp do
3: Best ← rotation(funfcn,Best,SE,α)
4: end for

where the function update alpha represents the implementa-
tion of selection the optimal parameter value of rotation factor.
The proposed STA differs from the standard STA in three
folds: 1) the periodical way of diminishing the transformation
factors is no longer used; 2) the optimal parameter is selected
for state transformation; 3) the optimal parameter is kept to
utilize for a period of time.

V. EXPERIMENTAL RESULTS

In order to testify the effectiveness of the proposed STA, the
following additional benchmark functions are used for test.

(5) Ackley function

f5(x)=20+e−20 exp(−0.2

√√√√ 1

n

n∑
i=1

x2
i )−exp(

1

n

n∑
i=1

cos(2πxi))

where the global optimum x∗ = (0, · · · , 0) and f(x∗) = 0,
−32 ≤ xi ≤ 32, i = 1, · · · , n.

(6) High Conditioned Elliptic function

f6(x) =
n∑

i=1

(106)
i−1
n−1x2

i

where the global optimum x∗ = (0, · · · , 0) and f(x∗) = 0,
−100 ≤ xi ≤ 100, i = 1, · · · , n.

(7) Michalewicz function

f7(x) = −
n∑

i=1

sin(xi) sin(
ix2

i

π
)20

where the global optimum is unknown, 0 ≤ xi ≤ π, i =
1, · · · , n.

(8) Trid function

f8(x) =

n∑
i=1

(xi − 1)2 −
n∑

i=2

xixi−1

where the global optimum x∗
i = i(n + 1 − i) and f(x∗) =

−n(n+4)(n−1)
6 , −n2 ≤ xi ≤ n2, i = 1, · · · , n.

(9) Schwefel function

f9(x) =

n∑
i=1

[−xi sin(
√
|xi|)]

where the global optimum x∗ = (420.9687, · · · , 420.9687)
and f(x∗) = −418.9829n, −500 ≤ xi ≤ 500, i = 1, · · · , n.

(10) Schwefel 1.2 function

f10(x) =
n∑

i=1

(
i∑

j=1

xj)
2

where the global optimum x∗ = (0, · · · , 0) and f(x∗) = 0,
−100 ≤ xi ≤ 100, i = 1, · · · , n.

(11) Schwefel 2.4 function

f11(x) =
n∑

i=1

[(xi − 1)2 + (x1 − x2
i )

2

where the global optimum x∗ = (1, · · · , 1) and f(x∗) = 0,
0 ≤ xi ≤ 10, i = 1, · · · , n.

(12) Weierstrass function

f12(x) =
n∑

i=1

kmax∑
k=0

[ak cos(2πbk(xi+0.5))]−n
kmax∑
k=0

ak cos(πbkxi)

where a = 0.5, b = 3, kmax = 20, the global optimum x∗ =
(0, · · · , 0) and f(x∗) = 0, −0.5 ≤ xi ≤ 0.5, i = 1, · · · , n.

Other metaheuristics are used for comparison, including the
GL-25 [36], CLPSO [37], SaDE [38], and ABC [39], with the
same parameter settings as in these literatures. The parameters
in the proposed STA are given by experience as follows: SE =
30, Tp = 10 (additional experiments have testified the validity
of these parameter values). The number of decision variables
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TABLE V
COMPARISONS AMONG VARIOUS ALGORITHMS ON TEST FUNCTIONS

Fcn Dim GL-25 CLPSO SaDE ABC Standard STA Proposed STA
20 2.5523e-10 ± 1.5883e-10 6.2546e-43 ± 1.4407e-42 6.3533e-188 ± 0 2.7287e-16 ± 6.1809e-17 0 ± 0 0 ± 0

f1 30 1.7872e-8 ± 1.0381e-8 1.9944e-40 ± 1.8175e-40 5.5498e-184 ± 0 5.6618e-16 ± 7.3169e-17 0 ± 0 0 ± 0
50 2.3336e-6 ± 1.5613e-6 8.3697e-63 ± 6.6314e-63 4.8082e-190 ± 0 1.3115e-15 ± 1.4686e-16 0 ± 0 0 ± 0
20 15.9120 ± 0.2273 1.3524 ± 1.5792 0.7973 ± 1.6361 0.0871 ± 0.1254 0.0327 ± 0.0019 3.2981e-07 ± 1.0312e-06

f2 30 25.9785 ± 0.1774 3.3395 ± 4.4690 1.3895 ± 2.1499 0.0523 ± 0.0672 0.0711 ± 0.0128 1.0027e-07 ± 1.0502e-07
50 46.3067 ± 0.4004 38.4515 ± 31.7815 16.2265 ± 21.2962 0.0634 ± 0.1142 2.5228 ± 1.2541 1.0660e-07 ± 8.0190e-08
20 88.3377 ± 10.1747 0 ± 0 0.2985 ± 0.4678 4.2633e-15 ± 1.0412e-14 0 ± 0 0 ± 0

f3 30 177.1109 ± 12.2431 5.6843e-15 ± 1.7496e-14 1.0945 ± 0.8479 8.5265e-14 ± 4.3251e-14 0 ± 0 0 ± 0
50 365.4491 ± 12.8696 0 ± 0 5.5220 ± 2.6516 1.0601e-12 ± 1.6704e-12 0 ± 0 8.5265e-15 ± 2.7817e-14
20 0.2620 ± 0.1020 5.2736e-16 ± 1.4066e-15 0.0034 ± 0.0051 1.3711e-15 ± 2.2887e-15 0 ± 0 0 ± 0

f4 30 0.0178 ± 0.0797 0 ± 0 0.0041 ± 0.0098 7.9936e-16 ± 6.3277e-16 0 ± 0 0 ± 0
50 2.0621e-6 ± 1.2609e-6 0 ± 0 0.0229 ± 0.0338 1.5432e-15 ± 6.5721e-16 0 ± 0 0 ± 0
20 2.9519e-6 ± 8.5896e-7 6.0396e-15 ± 7.9441e-16 2.6645e-15 ± 0 2.4336e-14 ± 3.6267e-15 7.1054e-16 ± 1.8134e-15 1.2434e-15 ± 1.7857e-15

f5 30 1.7312e-5 ± 4.9711e-6 7.2831e-15 ± 1.6704e-15 0.4004 ± 0.5677 4.7073e-14 ± 5.2189e-15 2.4869e-15 ± 7.9441e-16 2.6645e-15 ± 0
50 1.5638e-4 ± 5.1830e-5 1.2790e-14 ± 1.3015e-15 1.8811 ± 1.8811 1.0214e-13 ± 8.3914e-15 2.6645e-15 ± 0 2.6645e-15 ± 0
20 1.0920e-7 ± 8.5896e-7 9.6865e-40 ± 1.0089e-39 2.9962e-182 ± 0 2.8100e-16 ± 2.2693e-17 0 ± 0 0 ± 0

f6 30 4.3319e-6 ± 4.1372e-6 9.6865e-40 ± 1.0089e-39 7.5626e-180 ± 0 5.0197e-16 ± 5.0710e-17 0 ± 0 0 ± 0
50 1.4938e-4 ± 9.1548e-5 1.0767e-59 ± 9.2087e-60 3.6584e-188 ± 0 1.2513e-15 ± 1.3320e-16 0 ± 0 0 ± 0
20 -10.7121 ± 0.4311 -19.6363 ± 0.0013 -19.6204 ± 0.0210 -19.6359 ± 0.0013 -19.2512 ± 0.7144 -19.6370 ± 4.5865e-15

f7 30 -13.5080 ± 4.1372e-6 -29.5405 ± 0.0422 -29.5668 ± 0.0439 -29.6083 ± 0.0121 -29.2917 ± 0.5761 -29.3322 ± 0.4810
50 -18.2114 ± 0.8100 -49.2281 ± 0.1068 -49.3694 ± 0.1155 -49.5258 ± 0.0239 -48.9364 ± 0.7706 -49.2284 ± 0.5118
20 -1.2099e3 ± 63.9563 -1.2126e3 ± 198.0180 -1.5200e3 ± 0.0030 -1.4934e3 ± 17.7408 -1.5200e3 ± 7.6568e-10 -1.5200e3 ± 1.0526e-09

f8 30 -2.1886e3 ± 419.3236 -2.3303e3 ± 786.8715 -4.8684e3 ± 30.0984 -3.7616e3 ± 379.9890 -4.9300e3 ± 1.0317e-8 -4.9300e3 ± 1.9630e-8
50 -3.8943e3 ± 1.0972e3 -4.6039e3 ± 2.1276e3 -1.6988e4 ± 1.9831e3 -6.2731e3 ± 2.9887e3 -2.2050e4 ± 2.4728e-5 -2.2050e4 ± 1.2703e-06
20 -3.4543e3 ± 262.3109 -8.3797e3 ± 3.7325e-12 -8.3678e3 ± 52.9672 -8.3797e3 ± 1.7705e-12 -8.3797e3 ± 2.0013e-12 -8.3797e3 ± 2.4688e-12

f9 30 -4.2340e3 ± 206.4148 -1.2569e4 ± 1.8662e-12 -1.2534e4 ± 55.6852 -1.2569e4 ± 5.0878e-10 -1.2569e4 ± 3.9808e-12 -1.2569e4 ± 3.9808e-12
50 -5.5094e3 ± 308.3849 -2.0949e4 ± 7.4650e-12 -2.0848e4 ± 123.1747 -2.0949e4 ± 2.2694e-4 -2.0949e4 ± 6.9328e-12 -2.0949e4 ± 6.8824e-12
20 680.7399 ± 158.9219 6.0736 ± 3.4399 3.4609e-29 ± 1.5188e-28 122.8894 ± 57.5833 0 ± 0 5.4347e-323 ± 0

f10 30 6.0084e3 ± 891.0211 192.7349 ± 40.2446 1.7348e-18 ± 3.7702e-18 1.4779e3 ± 417.2093 0 ± 0 2.9857e-207 ± 0
50 2.6141e4 ± 3.4905e3 1.7640e3 ± 334.6602 1.1549e-11 ± 2.5786e-11 1.3111e4 ± 2.0672e3 4.9187e-16 ± 2.1481e-15 1.3290e-143 ± 2.4407e-143
20 2.6106e-9 ± 2.0321e-9 5.9122e-6 ± 2.7178e-6 1.8933e-30 ± 1.2854e-30 4.6418e-15 ± 1.2107e-15 3.4527e-13 ± 1.9644e-13 2.8663e-21 ± 1.5596e-21

f11 30 1.8994e-9 ± 1.5212e-9 7.2339e-5 ± 1.6458e-5 6.9050e-30 ± 1.9571e-30 7.9455e-15 ± 1.9605e-15 4.3734e-13 ± 2.3603e-13 4.7017e-21 ± 1.8546e-21
50 6.2123e-12 ± 1.0570e-11 4.6982e-7 ± 1.0856e-7 4.1750e-29 ± 2.8959e-29 2.3607e-14 ± 7.8298e-15 8.2000e-13 ± 2.3292e-13 8.3954e-21 ± 2.8656e-21
20 0.0047 ± 0.0012 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

f12 30 0.0302 ± 0.0077 0 ± 0 0.2097 ± 0.3033 0 ± 0 0 ± 0 0 ± 0
50 0.2307 ± 0.0805 0 ± 0 1.7162 ± 0.8589 2.7711e-14 ± 9.7534e-15 0 ± 0 0 ± 0
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Fig. 2. The average elapsed time for different metaheuristic methods with respect to f3 and f10, respectively



8

0 0.5 1 1.5 2 2.5 3

x 10
6

10
−10

10
−5

10
0

10
5

10
10

FES

A
ve

ra
g

e
 F

u
n

ct
io

n
 V

a
lu

e

 

 

GL−25
CLPSO
SaDE
ABC
Standard STA
Proposed STA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

10
−10

10
−5

10
0

10
5

10
10

FES

A
ve

ra
g

e
 F

u
n

ct
io

n
 V

a
lu

e

 

 
GL−25
CLPSO
SaDE
ABC
Standard STA
Proposed STA

0 2 4 6 8 10

x 10
6

10
−10

10
−5

10
0

10
5

10
10

FES

A
ve

ra
ge

 F
un

ct
io

n 
V

al
ue

 

 

GL−25
CLPSO
SaDE
ABC
Standard STA
Proposed STA

Fig. 3. The average iterative curves for different metaheuristic methods with respect to the Rosenbrock function
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Fig. 4. The average iterative curves for different metaheuristic methods with respect to the Schwefel 2.4 function

n of the benchmark functions is set to 20, 30 and 50, and
the corresponding maximum function evaluations is set at
5e4*n*log(n). A total of 20 independent runs are conducted
in the MATLAB (Version R2010b) software platform on
Intel(R) Core(TM) i3-2310M CPU @2.10GHz under Window
7 environment. The statistic results are given in Table V
and some typical instances with respect to elapsed time and
iterative curves are illustrated in Figs. 2-4.

From the experimental results, it can be found that the
proposed STA is superior to the basic STA among most
of these test problems. The global search ability (see the
Michalewicz function) and the solution accuracy (see the
Schwefel 1.2 and Schwefel 2.4 function) has greatly improved.
It can also be comparable to other metaheuristics except for the
Michalewicz function and the Schwefel 2.4 function. However,
it should be noted that only mean and standard deviation are
given for comparison. Actually, for the Michalewicz function,
the results obtained from the proposed STA hit the known
global solution for more than 50% of the total runs.

VI. CONCLUSION AND FUTURE WORK

In this study, the optimal parameter selection of operators
in continuous STA was considered to improve its search
performance. Firstly, a statistical study with four benchmark
cases was conducted to investigate how these parameters affect
the performance of continuous STA. And several properties
are observed from the statistical study. With the experience

gained from the statistical results, then, a new continuous STA
with optimal parameters strategy was proposed to accelerate its
search process. The proposed STA was successfully applied to
other benchmarks. Comparison with other metaheuristics was
conducted to demonstrate the effectiveness of the proposed
method as well.

It should be noted that the parameter Tp is given by
experience that needs further study, and the parameter se-
lection of operators in continuous STA is still a challeng-
ing problem, since the proposed optimal parameter selection
strategy can only be considered as a local vision. From an
overall perspective, the parameters set should be taken into
consideration as well, and it is not necessarily restricted to
one below. Furthermore, it can be found that the STA doesn’t
work steadily for the Michalewicz function and global search
ability should be strengthened further. In our future work, the
upper bound of the parameter set will be considered as well,
and an adaptive parameter selection strategy and appropriate
utilization of transformation operators can also be alternative
choices.

The MATLAB source codes of the standard STA and the
proposed STA are available upon request from the correspond-
ing author, or can be downloaded from MATLAB central file
exchange, or from X. Zhou’s homepage as follows
https://www.mathworks.com/matlabcentral/fileexchange/
http://faculty.csu.edu.cn/michael x zhou/zh CN/index.htm
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